Tianjin DaxueXuebao (ZiranKexueyuGongchengJishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online): 0493-2137

E-Publication: Online Open Access

Vol:54 Issue:04:2021

DOI 10.17605/0SF.I0/87AGP

DYNAMIC SCENARIOS TRANSFORMATION IN SOFTWARE SYSTEM
DESIGN USING ZEND FRAMEWORK

Dr. G MANJULA!, SOWMYA S R 2, LORATY SHINY?® and LAVANYA D*

1,2,4 Associate Professor, Department of ISE, Dayanada Sagar Academy of Technology & Management
Bengaluru, Karnataka,
3. Assistant Professor, Department of CSE, Sri Sairam College of Engineering, Bengaluru, Karnataka, India

ABSTRACT

In the real word many software performance prediction methodologies are available such
that the design decisions are clearly understandable by the stake holders. To improve the
existing software performance Palladio component model methodology is used by little
improving algorithm of the problem context which in turn reflected in the system design. The
software architectural patterns are the best tool in measuring the quality. There are different
types of architectural patterns like distributed systems, interactive systems etc. There are
two types of communicating structures known as Model View Controller (MVC) then
Presentation Abstraction Controller (PAC). Model View controller is more efficient tool and
incorporated with the programming languages like UML, Eclipse, Object oriented patterns
languages, java, etc.

1.1 SCOPE OF THIS WORK

Palladio component model is a normal state configuration structure where programming
procedure will interact effectively with the quality related issues in the existing system
design. The product procedure aimed at calculating quality in the execution, unwavering
guality then estimation charge will be utilized in product by using different design
programming language like simulation. The simulation is also one of the apparatuses where
the system designs execute third party or the outermost layer in the stake holders then in
turn calculating measurements. PCM is the process for evaluating the performance
prediction by using the architectural patterns and utilized in numerous approaches. Forecast
techniques designed for execution then unwavering quality based programming frameworks
stand discreet constrained further once now a while utilized as a part of industry Component
engineers who deliver segments that are amassed by programming designers and conveyed
by framework allocators. The differing data required for the forecast of additional useful
properties is in this way spread among these designer parts. PCM can likewise be utilized in
light of the distinctive information set, where the behavioural aptitudes of information are
information uprightness. The every conduct of information can be put into arrangement
outline and follow out. The general procedure of design the MVC for performance is shown
in the figurel.There are basically three units interrelated with each other like design inputs,
design activities and design outputs. The area of the system is architectural design which in
turn related with the interface design and database design. By modifying the architectural
design using MVC, the efficiency of the system can be improved. The architecture will be
same, when most of the systems domain same. The technology behind the domain may also
be same. To fulfil the customer s requirements the application product will in turn bounded
by core architecture of structure. The structural design of any classification stays designed
by various architectural styles. The architectural patterns are means of reusing the object
oriented design methods. This method relates towards programming designs demonstrated

174

Tianjin DaxueXuebao (ZiranKexueyuGongchengJishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online): 0493-2137

E-Publication: Online Open Access

Vol:54 Issue:04:2021

through the Palladio Component Model. It underpins quantifiable execution, dependability,
besides charge forecast then correlated with each other, reached out towards extra
reckonable excellence standards of programming designs. Through including another
segment display in the middle of the every framework remains other compelling in computing
also effortlessly reasonable in several professional solicitations.

1.2 PREREQUISITES AND SOFTWARE ARCHITECTURE

1. To tackle an issue an imperative is required so that accomplishing a target of an issue is
impressive.

2. The limitation or constraints obligation have the nature of connection by means of
framework part ideal to full fill the typical particular. However the additional strictly forced
archive.

3. A record requirement reflects the previously revealed phases, then after that can
guarantee that the engineering takes accomplished the goal of an issue.

II. REVIEW OF LITERATURE

Jan Bosch and Peter Molin [2], the main objective of well-defined architectural
transformation requisite method and not well-defined method are discussed. The well-
defined requisite methods are evaluated by iteratively such that the entire not well-defined
method requisites are fulfilled successively. The evaluation process is categorized into 3
types, they are Scenario based Simulation based, Mathematical modelling and finally
objective reasoning. In this method scenario based and simulation based computation is
been used and proved the performance prediction is improved comparatively based on the
previous methods. The second mode of evaluation is architectural transformation which
categorized into five types, they are architectural styles imposing, architectural patterns
imposing, design patterns using, converting not well defined requisite to distributed NFRs
which in turn converting into functionality.

H.M. Fahmy, R.C. Holt, and J.R. Cordy [3], the description of how can work around the
limitations of relational algebra using Grok. Since Grok is not tuned for the combinatory
involved in performing sub graph isomorphism testing, the algorithm is slow even for small
graphs.

Archit
ectural
analys

Archit

Archit Archit ArChi; ectural
ectural ectural [) ectural | Maint

Imple
synthe Evalua

A 4

Review recognizes SA approaches that are completed in administration of refinement, going
from an abnormal state SA model to a more point by point one, and those situated to SA
display development, remaining at a similar level of reflection. In this manner gives strong
standards to assessing SA changes and it calls attention to imperative zones that need
additionally inquire about. First architectural analysis, Second architectural synthesis and
finally architectural evaluation.

175

Tianjin DaxueXuebao (ZiranKexueyuGongchengJishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online): 0493-2137

E-Publication: Online Open Access

Vol:54 Issue:04:2021

ARCHITECTURAL STYLES

The architectural style, sometime termed as Architectural patterns. The set of protocols which
sharpen the application in user requirements is called architectural pattern. It derives the abstract
knowledge from all the aspects of a desired system. The structural organization of the system is
challenging task of the architectural pattern.

The prime responsibility of the architectural style is as follows.

1.

It provides a component; each component specification is prescribed with reference to the
family of the organization along with the set bounded around it. Each component is
interrelated with other component called connectors.

It always improves the requirements solution by partitioning the components specifically and
allows the reuse of the design by changing the design decisions. It also provides solutions
for frequently occurring problems.

It describes clearly the configuration of the components such as a module transformation,
well-defined interprets, reusability of the design and behavioral structure for replace
Algorithm- M-Accurate. The algorithm is to improve the existing system features. The
process of inserting and editing the existing components are the major risk. Hover to
overcome the existing system drawbacks need to add the CONCRETE model in the class
diagram of the source code. The evaluation of performance through the following steps can
be incorporated. The process flow of a software architectural design is as follows.

Stepl: Defining the architecture with state diagram.

Step2: Identifying basic styles in heterogeneous architecture based on system design
features.

Step 3: Mapping the state diagram to Markov model.

Step 4: Integrating Markov models to create an overall Markov model.

Stepb: Creating the separate sets for each style and enforcing limitations.

Step 6: Creating the transition probability matrix.

Step 7: Calculating the visit number of each state in Markov model.

Step 8: Evaluating the efficiency of the model.

Stochastic Anghysis
Regular Expr.

Comp.Dev. Palladio p
DSL Instance %, Component &
v o SPA with Analysis +

Model Scheduling “Trton

Soft. Arch. Pas

.
DSL Instance, ———p ['4.'{:;'-}?
& i)

o
Sys. Depl /
DSL Instance
Java Code Completion «

3/ Instance
o,
Dom. Exp
Skeletons

RESULTS: MULTI-STRATEGIC SOLUTIONS

Queueing Simulation
Network

Performance _E xecution +
Prototype o

2 48 4§ N 4

Case studyl

176

Tianjin DaxueXuebao (ZiranKexueyuGongchengJishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online): 0493-2137

E-Publication: Online Open Access

Vol:54 Issue:04:2021

ZEND FRAME WORK IN MVC PROGRAMMING DESIGN

The methodology applied in two study cases with certain constraints. Investigation of
subspace mixture model and various distance measure techniques in class diagram.

The UML-MVC Logical Model

The coherent model explained comprises of stereotyped standard UML charts and is
proposed to show the product segments to be created for each of the three layers of the
MVC design [8] and additionally the connections among. In particular, the model is
organized into the accompanying UML graphs:

1. Model Class Diagram (MCD): an UML class graph demonstrating the classes that take
an interest in the Model layer and execute the application business rationale and
information persistency.

2. View Class Diagram (VCD): an UML class graph speaking to the customer and server
pages in the View layer. These pages have the obligation of displaying information and
substance to the client and empowering client connection with the framework. This chart
likewise models:

3. Zend framework in MVC programming design

4. A client makes a demand with the framework and the b server handles the demand by
executing the bootstrap script index.php

5. The bootstrap scripts make an application case and runs it.

6. The application acquires gritty client ask for data from an application segment named
ask.

7. The Application decides the asked for controller and activity with the assistance of an
application segment named urlManager.

8. The Application makes an occurrence of the asked for controller to further handle the
client asks. The controller class. It then makes and executes channels, connected with
this activity. The activity is executed on the off chance that it is permitted by the channel.

9. The activity peruses a Post model who's ID is 1 from the database.
10. The activity renders a view named shoe with the Post show.

Software used in the implantation of the algorithm (Markova principle) the majority of the
scenario based components automatically will not support for verification and validation. The
software engineering process will always compute the new technology related to the
execution of the system. The work product of any system can be chosen based on the tool
set used for performance prediction. By considering the Palladio component model (PCM)
for software prediction, improved the efficiency and cost change of the system as shown in
the graph 4.7

177

Tianjin DaxueXuebao (ZiranKexueyuGongchengJishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online): 0493-2137

E-Publication: Online Open Access

Vol:54 Issue:04:2021

Quality criterion metricvalue performance

350

g ann
=
]
£ 250 =3
=
£ 200
=
a 150
5
g 100
% 50
]
-
= 8]
reliabilily
=== Avcroge utiliotion 12 T 22 =28} 55 &7 a2 11
= fverage respond time | 12 o] 232 78 31 67 o8 11

The software process can be designed based on the above said classifications; hover it is
necessary to apply the General Principles of David Hooker [Ho096] to make the system work
efficiently. The David Hooker principles are as follows

1. All the decisions are need such that that user value added in all the aspects.

2. Every design should be as simple as possible, such a way that it should not be so
simpler.

3. A strong visualisation is important to the achievement of a software venture of a system.

4. All the time identify, design and implement such that hierarchical growth may be required
else will have to recognize in all the aspects.

5. At no time design a system such that it is more specific to a corner.

6. Outline into the future viewpoints with the end goal that reuse-diminishes the cost and
expands the estimation of both the reusable part and the framework into which they are
fused.

7. Arranging clear, entire thought before activity quite often creates better outcomes are
shown in the graph 4.9

Graph 3
e E i
| S ====C=S— = E==7~- <assEE==
£ | et
== P, il
».f‘: 0.6 - "‘"_f:_:_ff’ = SE
£]

responsc time In scconds

SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY AND PRACTICE

The principal deliberate scenario-based technique is described and assessing programming
engineering is maybe the SAAM strategy [2, 3, 4], which will be contemplated in the
following section. SAAM strategy was initially recommended to improve the performance
prediction tools, reusability, cost and modifiability of programming frameworks in view of data
exhibited in building outlines. It has been investigated for the assessment and examination
of programming quality credits identified with the alterations, for example, movability,
extensibility, integratability, and so on and also practical scope, execution and unwavering
guality. Scenario-based techniques for breaking down different programming quality
characteristics at design level have additionally been contemplated by Jan Bosch, Perol of
Bengtsson for practicality [5], by Perol of Bengtsson, Nico Lassing, Jan Bosch and Hans
van Vlient for modifiability [6, 7], and Per Olof Bengtsson and Jan Bosch for scenario-based
engineering reengineering [8]. Rick Kazman, Jeromy Carriere and Steven Woods [9]

178

Tianjin DaxueXuebao (ZiranKexueyuGongchengJishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online): 0493-2137

E-Publication: Online Open Access

Vol:54 Issue:04:2021

explored how to inspire scenarios efficiently and introduced a product apparatus to bolster
the administration of scenarios in engineering examination.

In a more extensive setting, scenarios are utilized in prerequisites building to evoke
programming necessities, see for instance [10], yet for the most part for practical
prerequisites. Specifically, utilize cases and scenarios assume a huge part in protest
arranged investigation and plan system.

REFERENCES

[1] Karl J. Lieberherr, College of Computer Science, North-eastern University Cullinane Hall,
Boston, MA 02115 —Metrics of Graph Abstraction for Component-Based Software
Architecturell Los Angeles, California USA March 31-April 02 ISBN: 978-0-7695-3507-4

[2] Science of Computer Programming - Special issue on —Applications of graph
transformations (GRATRA 2000) — Volume 44 Issue 2, August 2002 Publisher: Elsevier
North-Holland, Inc. Amsterdam, The Netherlands, The Netherlands ISSN: 0167-6423
doi:10.1016/S0167-6423(02)00036-9

[3] Guo Wei, XiongZhong-Wei, Xu Ren-Zuo, "Metrics of Graph Abstraction for Component-
Based Software Architecture," csie, vol. 7, pp.518-522, 2009 WRI World Congress on
Computer Science and Information Engineering, 2009.Articles:Visual Design of Software
Architecture and Evolution based on Graph Transformation

[4] Eclipse.org. ATLAS Transformation Language (ATL). http://www.eclipse.org/m2m/atl/.

[5] A. Billig, S. Busse, A. Leicher, and J. G. Siss. —Platform Independent Model
Transformation Based on TRIPLEI. In Middleware'04: Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware, pages 493-511, 2004. [6] D.
Ayed and Y. Berbers. —UML Prcfile for the Design of Platform-Independent Context-Aware
Applications. In MODDMI 06: Proceedings of the 1st Workshop on Model Driven
Development for Middleware, pages 1-5, 2006.

[7] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification Version
1.0. ttp://lwww.omg.org/docs/formal/08-04-03.pdf, 2008.

[8] S. Link, T. Schuster, P. Hoyer, and S. Abeck. —Focusing Graphical User Interfaces in
Model-Driven Software Developmentll. In ACHI‘08: Proceedings of the 1st International
Conference on Advances in Computer-Human Interaction, pages 3-8, 2008.

[9] D. Habich, S. Richly, and W. Lehner. IgnoMDA —EXxploiting Cross-layer Optimization for
Complex Database Applicationsll. In VLDB‘06: Proceedings of the 32nd International
Conference on Very Large Data Bases, pages 1251-1254, 2006.

[10] David Garlan and Mary Shaw,ll An Introduction to Software Architecture, In Advances in
Software Engineering and Knowledge Engineeringll, Volume 1, World Scientific Publishing
Company, 1993.

[11] C. He, F. He, K. He and W. Tu. —Constructing Platform Independent Models of Web
Applicationll. In SOSE'05: Proceedings of the 2005 IEEE International Workshop on Service-
Oriented System Engineering, pages 85-92, 2005

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. —Pattern-Oriented
Software Architecture: A System of Patternsll. John Wiley & Sons, Inc., 1996.

[13] M. Lopez-Sanz, C. Acufia, C. Cuesta, and E. Marcos. —UML Profile for the Platform
Independent Modeling of Service-Oriented Architectures. Software Architecturell, pages
304-307, 2007.

[14] eclipse.org. Model to Model (M2M) Project. http://www.eclipse.org/m2m/.

[15] T. Fink, M. Koch, and K. Pauls. —An MDA approach to Access Control Specifications
Using MOF and UML Prdfiles. Electronic Notes in Theoretical Computer Sciencell, 142:161—
179, 2006. [16] J. Bezivin, S. Hammoudi, D. Lopes, and F. Jouault. —Applying MDA

179

Tianjin DaxueXuebao (ZiranKexueyuGongchengJishu Ban)/
Journal of Tianjin University Science and Technology

ISSN (Online): 0493-2137

E-Publication: Online Open Access

Vol:54 Issue:04:2021

approach for Web service platform. In EDOC‘'04ll Proceedings of the 8th IEEE International
Enterprise Distributed Object computing Conference, pages 58-70, 2004. Dynamic scenario
transformation in software system design Page 46

[17] International Journal of Computer Science & Information Technology (IJCSIT) Vol 3, No
4, August 2011 DOI: 10.5121/ijcsit.2011.3405 57 —BASED ATL TRANSFORMATION TO
GENERATE MVC 2 WEB MODELSI.

[18] Liliana DOBRICA1, Anca Daniela, —mda-based atl transformation to generate mvc 2
web modelsll in AUTOMATIC TRANSFORMATION OF SOFTWARE ARCHITECTURE
MODELS. IONIT Radu PIETRARU3, Adriana OLTEANU4 U.P.B. Sci. Bull., Series C, Vol.
73, 2011 ISSN 1454-234x [19] Daniel Toll and Morgan Ericsson, —Evolution and evaluation
of the Model view controller architecture in gamesll, by in IEEE/ACM 2015 4th international
workshop on games and Software Engineering.

[20] Daniel Lucredio, Renata P m Fortes, Eduardo S Almedia and SilvoL.Meira, —Designing
domain architectures for Model-driven engineeringll, in 2010 Fourth Brazilian symposium on
software components, Architectures and reuse.

[21] Ramon Hugo de Souza, Paulo arion Flores, —Architecture recovering model for
distributed databases: A reliability, Availability and Serviceability approachll in IEEE
symposium on Computers and communication in 2016.

[22] zaki Brahmi, Jamel Feki, SlimaneHammoudi —Towards semi-Automatic transformation
Process in MDA Model driven software architecture evolution information capture — 2015
second international conference on Information science and control engineering.

180

